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Abstract
We present the theoretical study of weak localization in a disordered sandwich structure, which
consists of a thin, dirty metallic film bounded by nearly insulating materials with electrical
current primarily located in the metallic film. The conductance correction, δG(B), due to
backscattering interference is calculated within the weak-localization theory as a function of
perpendicular magnetic field B . It is found that, for a certain range of structural/material
parameters, both the conductance correction δG(B = 0) and magnetoconductance (MC) show
a weak temperature dependence (i.e. saturation) over a range of low temperatures, as opposed
to those of a freestanding metallic film, which show a strong temperature dependence. At
further lowered temperatures, it shows that δG(B = 0) and MC may or may not diverge,
depending on the structure. If the structure is thin like a film, δG(B = 0) and MC both
eventually diverge. On the other hand, if the structure is thick like a bulk, saturation of
δG(B = 0) persists to 0 K but MC is likely to diverge. We also fit the calculated MC of
sandwich structures with the weak-localization theory suitable for a freestanding film, with the
phase breaking time τϕ in the theory being the fitting parameter. This gives a nominal phase
breaking time τ (eff)

ϕ , which is nearly constant over a range of low temperatures. The implication
of the work is discussed in connection with the issue of dephasing time saturation. The
limitation of the present theory is examined and directions for future extension are suggested.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The physics of diffusive transport in disordered systems
constitutes a fascinating field in condensed matter physics. An
important work to unveil the physics of disordered systems
is the renormalization group-theoretical analysis, by Abraham
et al, of non-interacting, low-dimensional cases [1]. In essence,
it leads to the phenomenal conclusion that disordered systems

3 Address for correspondence: Department of Electrical Engineering,
National Tsing-Hua University, Hsin-Chu, Taiwan, 300, Republic of China.

are insulators in one dimension (1D) and two dimensions
(2D). The conclusion is supported by the theory of weak
localization, which calculates δR, the correction to classical
resistance due to the quantum interference occurring between
a backscattering path and its time-reversal counterpart [2].
It shows that δR diverges in low-dimensional systems.
Moreover, it shows that the divergence of δR also occurs
in homogeneous, quasi-low-dimensional systems, where the
motion of electrons perpendicular to the system is either
diffusive or just quantum mechanical, and confined by abrupt,
reflecting boundaries.
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An important timescale for the backscattering interference
is the so-called phase breaking (or dephasing) time, τϕ . In non-
magnetic systems, it is determined by the inelastic scattering,
for example, between electrons or between electrons and
phonons. Such scattering brings randomness into the phase of
quantum amplitude, thus breaking phase coherence and setting
the timescale for interference (which occurs within the length
of time when the phases are coherent). In general, τϕ increases
with decreasing temperature. Specifically, it becomes infinite
at 0 K [3], resulting in divergent δR for low-dimensional
systems.

On the other hand, apart from inelastic scattering, the
interference can also be suppressed by a magnetic field.
With the field, the time-reversal symmetry is broken and
the quantum amplitudes of backscattering paths in a time-
reversal pair are no longer in phase. The interference is
thereby reduced, causing a change in conductance/resistance,
called magnetoconductance (MC)/magnetoresistance (MR).
Almost since the early study of weak-localization phenomena,
the MC/MR measurement has become an important tool
for the investigation of weakly disordered systems, and
most of the experiments have confirmed the theory of weak
localization [4]. The primary exceptions come from the recent
work of Mohanty and Webb with one-dimensional wires [5],
and the earlier data (some of which being for quasi-two-
dimensional systems) taken by other groups [6] (with the
latter being also analyzed in [5]). In summary, a saturated
MC has been found at low temperatures, and the finding has
been interpreted as suggesting the existence of intrinsic phase
decoherence at 0 K. Such a decoherence has the non-trivial
implication for diffusive transport at 0 K—although inelastic
scattering vanishes, the decoherence still imposes an upper
bound on τϕ . Consequently, this limits the divergence of δR
and contradicts the current belief (e.g. [1]) mentioned earlier
that electrons are localized in disordered low-dimensional
systems. In order to resolve the contradiction, Pierre and
Birge have performed a similar measurement and argued that
the observed saturation can be attributed to dilute magnetic
impurities [7]. But Huang et al demonstrate otherwise in
a recent experiment, where a sharp upturn in the MC curve
is observed at the end of saturation and which cannot be
explained in terms of magnetic impurity scattering [8]. In
the mean time, theoretical explanations based on the idea of
intrinsic dephasing have appeared. In particular, Golubev
and Zaikin have examined the zero-point fluctuation-induced
decoherence [9] and Zawadowski et al have looked into the
dephasing with two-level defects [10]. On the other hand,
Marquardt et al have recently provided a comprehensive
theoretical analysis showing that the Pauli exclusion principle
suppresses the quantum fluctuation of the environment for
electrons near the Fermi level [11]. This work clarifies the
role of zero-point fluctuation and leads to the conclusion of
infinite τϕ at 0 K, in agreement with the earlier theoretical work
in [3]. Meanwhile, routes other than the intrinsic mechanism
have been pursued. For example, Germanenko et al have
studied a model where the system is two-dimensional and
has a multiply connected topology, with electrons diffusing
in percolating, constricted channels [12]. As a result of the

topology, the magnetoresistance (MC) is saturated according
to their numerical simulation.

In this work, we do not attempt to prove/disprove the
existence of intrinsic phase breaking or, equivalently, electron
localization in low-dimensional systems. Instead, we approach
from a different direction and examine a closely connected
problem—the possibility of δR or MC being saturated over
a range of temperatures for a quasi-two-dimensional (Q2D)
system, within the weak-localization theory. In particular, we
study the possibility of the saturation as a consequence of
the inhomogeneity in a structure. The idea is summarized as
follows. We begin with writing the overall resistance R as a
functional of the local conductivity σ(�r), i.e. R = R[σ(�r)].
This gives the quantum correction to R as the integral

δR =
∫

d�r δR

δσ
δσ(�r), (1.1)

where δσ (�r) is the quantum correction to σ(�r). In the theory
of weak localization, one has, roughly,

δσ (�r) ∝
∑
β

|�β(�r)|2
λβ + 1/τϕ

, (1.2)

with λβs and ψβs in (1.2) being the eigenvalues and
eigenfunctions satisfying a diffusion-type eigenequation.
Notably, the equation has the characteristic property of always
having λβ = 0 as a solution. Correspondingly, there is a
singular term in the sum in (1.2), which dominates and, in
particular, diverges with a simple pole, in the limit where
τϕ → ∞ (which happens at vanishing temperature, as
mentioned earlier). This special pole is called the diffusion
pole, and is the main reason for the divergence of δσ (�r) in
low-dimensional systems. However, it is worthwhile noting
that, in general, a sum containing a singular term does not
necessarily blow up. For example, in the case of a three-
dimensional system, the eigenvalues may be continuous and
the summation in (1.2) performed over the corresponding
continuous spectrum may very well be finite. Below, we shall
focus on Q2D systems and discuss an alternative, interesting
scenario where the divergence of δσ (�r) may be suppressed
(but does not disappear). We begin with noting that all
the terms in (1.2), including the singular one with a pole,
are each weighted by a corresponding numerator |�β(�r)|2.
The weight factor may actually play an important role in
determining the magnitude of a term. For example, a nearly
vanishing |�β(�r)|2 for the singular term could well suppress
the singularity and, hence, the divergence of δσ (�r) as well.
In the case of an ideal Q2D system (which we take to be a
homogeneous, freestanding film), such suppression does not
occur, as explained in the following. We estimate |�β(�r)|2
first. Because of the homogeneity, we have O(|�β(�r)|2) ∼
1/twl, irrespective of β , where t = thickness, w = width
and l = length of the film. Thus, the weight factors are all
of the same order and unable to differentiate the magnitude
of various terms. It follows, in the case of a homogeneous
system, that the relative magnitude of each term in (1.2) can
only depend on the corresponding denominator λβ + 1/τϕ .
As having been explained earlier in terms of the diffusion
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pole, this denominator dependence results in the likelihood of
dominance by the singular term in (1.2) and the divergence
of δσ (�r) as well. On the other hand, a different situation
can arise if the system is inhomogeneous. In particular, if it
is drastically modulated, |�β(�r)|2s would be rapidly varying
in space and, for some βs, might be nearly vanishing in the
region of importance (to the integral of δR in (1.1)) where
the derivative δR/δσ is large. Correspondingly, some of the
terms in (1.2) would be suppressed in their contribution to
δR and the upshot is that, if the singular term happens to
be among them, δR may appear to show a non-divergent (or
weakly temperature-dependent) behavior over a range of low
temperatures.

Following the above discussion, we examine the Q2D
systems which are spatially modulated. The Q2D structure is
defined, in this work, as a system which has classical current
limited mainly within a thin layer. In particular, the structure
considered is a sandwich type and consists of a thin, dirty
metallic film (called the H layer) bounded by nearly insulating
layers (called L layers). The electric current, as shown later,
is confined mainly in the H layer. In general, the sandwich
structure can be classified in the following way according to
its various length scales. Let H = H-layer thickness, L = L-
layer thickness, lH = elastic mean free path in the H layer,
lL = elastic mean free path in the L layer, λH = electron
wavelength in the H layer and λL = electron wavelength in
the L layer. The theoretical derivation in the present work
considers only the diffusive structures, where H > lH > λH

and L > lL > λL are both satisfied. We call these the
diffusion-confined structures. On the other hand, there are
systems with H < λH, or L < λL, or electron wavefunctions
decaying in L layers, for example. Such systems are all
called quantum-confined ones and, rigorously speaking, are
not covered by the present theoretical derivation. Among
these are some systems which may also be relevant to current
dephasing experiments. Nonetheless, our study focuses on
the diffusion-confined sandwich structure for the following
reasons. First of all, as shall be discussed in section 2, such
a structure may simulate some of the experimental systems
used for the study of 2D weak localization Second, as shall
be discussed later, although the current in the structure is
primarily confined in the metallic film, the structure shows
an interesting behavior distinct from that of an isolated
film, namely, suppression of both conductance correction and
magnetoconductance. Third, in the case of diffusion-confined
structures, diffusive transport theory is valid and thus the weak-
localization phenomenon is susceptible to a clean-cut analysis
with diffusive transport theory. Results of such an analysis
may also be used as a guide for the future study of varied
structures such as quantum-confined ones. Given the above
reasons, we are thus motivated to study a diffusion-confined
sandwich structure.

The mathematics of our work focuses on deriving the
theory of weak localization appropriate for such a structure.
The work uses the isolated film as a reference and compares
the sandwich structure with the film, in order to demonstrate
the suppression of weak localization in the sandwich relative to
that in the film. It shows that, if one inadvertently uses the film

theory to interpret the sandwich data, the ‘effective dephasing
time’ would appear suppressed/saturated. Furthermore, in the
absence of a rigorous derivation for quantum-confined systems,
the theory is used as a guide to discuss dephasing experiments,
where quantum-confined systems are as likely to be involved
as diffusion-confined ones. In particular, this work carries
out the calculation of δG (with δG ≡ −δR/R2 being the
quantum correction to conductance) and MC both as functions
of 1/τϕ for the sandwich structure. We regard 1/τϕ as due
to inelastic scattering and hence a monotonically increasing
function of temperature. Specifically 1/τϕ = 0 at 0 K.
The main result of the work shows that, for a certain range
of structural/material parameters, the sandwich structure may
show properties different from those of homogeneous Q2D
systems, namely its δG/MC are saturated over a range of low
1/τϕ (or low temperatures). At further lowered temperatures, it
shows that δG/MC may or may not diverge, depending on the
structure. If the aspect ratio thickness: length � 1, meaning
that the structure is film-like, then δG/MC eventually diverges.
On the other hand, if thickness: length ∼ O(1), meaning that
the structure is bulk-like, saturation of δG persists to 0 K but
MC is likely to diverge. We may as well stress that there
is no conflict between our result for the sandwich structure
and the localization argument of the Gang of Four (in [1])
for a real 2D or an ideal Q2D system since the structures are
different. With the latter, the system is homogeneous, electrons
are well confined in the perpendicular direction, and δG/MC
are temperature-sensitive at low temperatures. We also fit the
calculated MC of the sandwich structure with the orthodox
weak-localization theory of an (ideal) freestanding film, with
τϕ of the film theory being the fitting parameter. This gives
a nominal phase breaking time τ (eff)

ϕ which is nearly constant
over a range of low temperatures.

The presentation is organized as follows. In section 2, we
describe details of the sandwich structure and its connection to
experimental systems. In section 3, we describe the calculation
of backscattering interference for the structure. In section 4,
we discuss qualitatively the overall low-temperature behavior
of δG and MC. In particular, we estimate the characteristic
1/τϕ where δG/MC begins to saturate. We also discuss the
upturn of δG/MC with a film-like structure at extremely low
temperatures and the zero-temperature saturation of δG/MC
with a bulk-like structure. Moreover, we provide quantitative
expressions within perturbation theory for the calculation of
δG and MC. In section 5, we derive analytical estimates within
logarithmic accuracy for δG/MC as functions of 1/τϕ . In
section 6, we carry out numerical calculations and compare
the result obtained for a film-like sandwich structure with that
for a freestanding metallic film. We fit the calculated MC
of the sandwich structure with the weak-localization theory
of a freestanding film and show the behavior of τ (eff)

ϕ at
low temperatures. In section 7, we remark on the theory,
summarize and conclude the study. A simple physical picture
for dephasing is offered in terms of electron lifetime in the
H layer. A brief analysis, guided by the present theory, is
given of dephasing experiments, where a theoretical estimate
of saturated dephasing time is compared with the experimental
value. Limitations and any future extension of the present
theory are discussed.
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Figure 1. The L–H–L sandwich structure. The middle region is the
dirty metallic film called the H region, and on both sides of it are
nearly insulating L regions. The structure is capped with perfectly
insulating I slabs. The electrodes are attached only to the H layer and
isolated from the L regions by thin layers of insulator.
H = thickness of the H layer and L = thickness of the L layer. The
lengths of the structure in y and z directions are both L yz . The
applied magnetic field is perpendicular to the layer, i.e.
�B = (B, 0, 0), with a vector potential �A = (0, 0, By).

2. Model structure and its connection to
experimental systems

The system considered is an L–H–L layered structure
immersed in a magnetic field perpendicular to the layers, as
shown in figure 1. In the middle is the H layer, a thin,
dirty metallic region, highly conductive and bounded by nearly
insulating L layers, with L and H being the thicknesses of
L and H layers, respectively. We take each layer to be a square
film, with L yz being the side length of the square. Moreover,
we take L yz 	 H so the H layer is indeed a thin film. The L–
H–L structure is the electrically active part of the system, and is
capped on both sides by I slabs, which are perfectly insulating
materials. The electrodes are attached only to the H layer.

Two classes of sandwich structures are considered in this
work. If the L layer is thin enough such that the total thickness
of L–H–L obeys H + 2L : L yz � 1, we have a film-like
structure. On the other hand, if the aspect ratio L : L yz ∼
O(1), we call it a bulk-like structure.

The L–H–L sandwich structure is quantitatively character-
ized by the parameters α, β, γ and χ , defined by the following
expressions, namely, L = χH , lL = L/γ and lH = H/α
where lL and lH are the elastic mean free paths of electrons
in the two regions, and vH/vL = βlL/ lH, where vL and vH

are the electron Fermi velocities. It follows that DH/DL = β

where DH and DL are diffusivities, σH/σL = αβ2χ/γ where
σH and σL are classical electrical conductivities, and GH/GL =
αβ2/γ where GH and GL are classical conductances. There-
fore, α, β, γ and χ can be used to control the contrast of trans-
port properties between the H and L regions.

Figure 2 shows the profile of current density obtained by a
calculation with the device simulation software MEDICI [13]
for a sandwich structure with GH/GL ∼ 10, which simulates
closely the typical system considered in this work, except that

Figure 2. The current density simulated with MEDICI for a
semiconductor sandwich structure. DC bias V = 5 V is applied and
the current density at y = 5 μm is plotted. The structure is
characterized by the widths H = 1 μm, L = 10 μm, the electron
densities nH = 1020 cm−3, nL = 1014 cm−3, the mobilities
μH = 10 cm2 V−1 s−1, μL = 105 cm2 V−1 s−1, and the
conductivities σH = 160 A cm−1 V−1, σL = 1.6 A cm−1 V−1, at the
temperature 300 K.

it is a semiconductor. Specifically, the device is characterized
by the thicknesses H = 1 μm, L = 10 μm, the electron
densities nH = 1020 cm−3, nL = 1014 cm−3, the mobilities
μH = 10 cm2 V−1 s−1, μL = 105 cm2 V−1 s−1, and the
conductivities σH = 160 A cm−1 V−1, σL = 1.6 A cm−1 V−1,
at the temperature 300 K. The profile in figure 2 shows that
the current density is primarily distributed in the thin H layer.
Integrating the current density in figure 2, we find the current
ratio IH/IL ∼ GH/GL ∼ 10 	 1 at y = 5 μm, halfway
between the top and bottom electrodes, where IH and IL are
the currents flowing in the H and L regions, respectively. This
confirms the thin H layer as the main conducting channel,
while it also shows a small fraction (∼O(GL/GH)) of total
current flowing in the L layer, despite this layer not being
directly attached to the electrodes.

Throughout the rest of this presentation, we take α, γ >

1 such that L > lL and H > lH. This justifies our
following treatment of transport in the structure with the theory
of diffusive transport (including backscattering correction).
Moreover, we take the various contrasts to satisfy the following
inequalities, namely vH/vL[=αβχ/γ ] 	 1, DH/DL[=β] �
O(1), σH/σL[=αβ2χ/γ ] 	 1 and GH/GL[=αβ2/γ ] 	 1.
The foregoing contrast inequalities can be satisfied by the
choice of a sufficiently large β , χ or α/γ . In the following,
we use specifically the set of parameters

β 	 1, α, γ > 1, α/γ > 1, χ � O(1)

(for film-like structures)

or alternatively

β � O(1), α, γ > 1, α/γ > 1, χ 	 1

(for bulk-like structures).

Both sets greatly simplify the analysis. The contrast
inequalities are satisfied by either choice of parameters, and
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when the inequalities do hold, both the electron population and
the electrical current are primarily concentrated in the thin H
layer. A structure with such a feature of confinement seems
to be among the reasonable models for experimental Q2D
systems. Moreover, with the condition H > lH and L > lL,
our structure describes diffusion-confined systems.

It is important to note that, apart from the H layer and I
slab, our model also includes the lowly conductive L region
in the structure, to simulate the physical/chemical transition
from the highly conductive H layer into the insulating I slab.
Inclusion of the L region gives a more complete account of
a general Q2D system. In the case of a film-like structure,
both the (electrically active) H and L regions are thin layers,
and the structure models an experimental Q2D system well
insulated (by I slabs) from the surroundings. On the other
hand, for a bulk-like structure, we have L : L yz ∼ O(1).
With a wide L region also being electrically active (apart from
the highly conductive H layer), the bulk-like structure models
an experimental Q2D system which is not perfectly insulated
from the surroundings.

Last, we note that an actual non-freestanding film (i.e.
metal film on an insulating substrate) may best be modeled
by an asymmetric I–L–H sandwich structure, with I being
the substrate, H the film and L the I–H interface. However,
the calculation below considers a symmetric (I–L–H–L–I)
structure so that the reflection symmetry of the system may be
used to simplify the mathematical analysis. The derived results
also hold qualitatively for asymmetric systems.

3. Backscattering Cooperon

Next, we discuss the backscattering Cooperon C(�r , �r ),
which determines the quantum correction δσ to the classical
conductivity through the following expression [2]:

δσ (�r) = −G0 · DτC(�r , �r) (G0 ≡ 2e2/π h̄).

C(�r , �r) satisfies, in the absence of a magnetic field,
the diffusion-type equation for the modulated structure
considered [14]:(

− 1

d
∇l(x)∇v(x)+ 1

τϕ(x)

)
C(�r , �r ′) = 1

τ (x)
δ(�r − �r ′)

(3.1)
with d = dimensionality, l(x) = mean free path, ν(x) =
Fermi velocity, τϕ(x) = phase breaking time and τ (x) = mean
free time. The x direction is taken to be perpendicular to the
structure. In the presence of a magnetic field B , we replace �∇
with �∇ − 2ie

h̄c
�A(�r) where �A is the vector potential. C(�r , �r) in

equation (3.1) is a Green function and so can be expressed as

C(�r , �r) =
∑
β

|� ′
β(�r)|2v(x)/τ (x)

λ′
β

(3.2)

with λ′
β and � ′

β satisfying the auxiliary equation[
− 1

d

∂

∂x
l(x)

∂

∂x
v(x)− D(x)

∂2

∂y2
+ D(x)

(
1

i

∂

∂z
− 2eB

h̄c
y

)2

+ 1

τϕ(x)

]
� ′
β(�r) = λ′

β�
′
β(�r) (3.3)

where D(x) = diffusivity and the gauge �A(�r) = (0, 0, By)
has been chosen for the vector potential. Let β = (n, μ).
Equation (3.3) can be satisfied with

μ = k‖

� ′
n,μ(�r) = ψ ′

n,k‖ (x) ei�k‖·�r‖/L yz

for B = 0, where �k‖ = (ky, kz) and �r‖ = (y, z), and with

μ = m = integer

� ′
n,μ(�r) = ψ ′

n,m(x)um

(
y − h̄c

2eB
kz

)
eikz z/

√
L yz

for B = 0 where um = asimple harmonic oscillator
wavefunction. Now, λ′

n,μ and ψ ′
n,μ satisfy(

− 1

d

∂

∂x
l(x)

∂

∂x
v(x)+ D(x)K 2

μ + 1

τϕ(x)

)
ψ ′

n,μ(x)

= λn,μ(B)
′ψ ′

n,μ(x)

where

K 2
μ =

⎧⎪⎨
⎪⎩

k2
y + k2

z , for B = 0(
m + 1

2

)
4eB

h̄c
, for B = 0.

We treat 1
τϕ(x)

in the above equation perturbatively and replace
the equation with the unperturbed equation(

− 1

d

∂

∂x
l(x)

∂

∂x
v(x)+ D(x)K 2

μ

)
ψn,μ(x)

= λn,μ(B)ψn,μ(x) (3.4)

where

ψn,μ ≈ ψ ′
n,μ,

λn,μ(B) ≈ λn,μ(B)
′ −

〈
n, μ

∣∣∣∣ 1

τϕ(x)

∣∣∣∣ n, μ

〉
.

(3.4′)

Equation (3.4) simulates the quantum mechanics of a particle
moving in a one-dimensional potential D(x)K 2

μ. This is the
main equation to be solved in this work. The solution is
required to obey the boundary condition that

v(x)ψn,μ(x) and l(x)
∂

∂x
[v(x)ψn,μ(x)]

is continuous at the H/L interface. At the L/I interface,
we impose ∂

∂xψn,μ(x) = 0, meaning vanishing normal
current there. Normalization of the solution requires∫

dx |ψn,μ(x)|2v(x) = 1.
For (un-normalized) even-parity solutions at x > 0 (with

the origin x = 0 chosen to be at the vertical plane of reflection
symmetry of the structure), we have

ψn,μ(x) =
{

cos(γ (H)n,μ x) in H-region

Cn,μ cos[γ (L)n,μ(x − H/2 − L)] in L-region

−lHγ
(H)
n,μ tan(γ (H)n,μ H/2) = lLγ

(L)
n,μ tan(γ (L)n,μL)

(3.5a)
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where γ (i)n,μ = (λn,μ/Di − K 2
μ)

1/2, i = H, L and Cn,μ is a
constant, and the last transcendental equation determines the
eigenvalues of even-parity solutions. For solutions of odd
parity at x > 0

ψn,μ(x) =
{

sin(γ (H)n,μ x) in H-region

Cn,μ cos[γ (L)n,μ(x − H/2 − L)] in L-region

lHγ
(H)
n,μ cot(γ (H)n,μ H/2) = lLγ

(L)
n,μ tan(γ (L)n,μL).

(3.5b)
Analysis of the transcendental equations in (3.5a)

and (3.5b) leads to the conclusion that the solutions are
standing waves of two types. The first type is termed an H
state, having a wavevector γ (H)n,μ ∼ nHπ/H thus behaving as a
standing wave in the H region. The second type is termed an
L state, with a wavevector γ (L)n,μ ∼ nLπ/L thus behaving like
a standing wave in the L region. The eigenvalue spectrum has
the following structure, namely a dense set of L states, with
narrow level spacing of O(DL/L2), mixing with a dilute set
of H states, the latter having wide level spacing O(DH/H 2).
Moreover, analysis of equations (3.5a) and (3.5b) for ψn,μ also
shows that an L state generally has a distribution primarily
located in the L region, with the integrated ‘probability’ for
the region

pn,μ|L ≡
∫

dxL |ψn,μ(xL)|2v(xL) = 1 − O(γ /αβχ2),

(3.6a)
being close to unity, while its integrated probability over the H
region

pn,μ|H ≡
∫

dxH |ψn,μ(xH)|2v(xH) = O(γ /αβχ2), (3.6b)

is near zero. In contrast, an H state has a substantial probability
in the H layer, with

pn,μ|H � 1 − O(γ /α), (3.6c)

while
pn,μ|L � O(γ /α). (3.6d)

Variation of pn,μ|H with states is shown in figure 3. The peaks
belong to H states and pn,μ|H drops drastically for L states. The
contrast between H states and L states becomes strong with
increasing α/γ , β and χ .

In terms of pn,μ|H and pn,μ|L, we can re-express
equation (3.4′) as

λn,μ(B)
′ ≈ λn,μ(B)+ 1

τ
(n,μ)
ϕ

where 1
τ
(n,μ)
ϕ

≡ pn,μ|H
τϕ(x)|x∈H

+ pn,μ|L
τϕ(x)|x∈L

. Moreover, we make the

approximation that 1
τ
(n,μ)
ϕ

∼ 1
τ
(H)
ϕ

for H states and 1
τ
(n,μ)
ϕ

∼ 1
τ
(L)
ϕ

for

L states, both of which are independent of (n, μ). 1
τ
(H)
ϕ

and 1
τ
(L)
ϕ

represent typical expectation values < n, μ| 1
τϕ(x)

|n, μ > for
H and L states, respectively. The approximation here neglects
the variation of 〈n, μ| 1

τϕ(x)
|n, μ〉 with (n, μ) and simplifies the

calculation of C(�r , �r).

(a)

(b)

Figure 3. The probability pn,μ|H in the H region versus quantum
number n, with Kμ = 0, shown in (a) for the even-parity states and
in (b) for the odd-parity states. Parameters except β are
L = H/2, α = 10, γ = 2. Two values of β are used—β = 40 (black
triangles) and β = 4000 (empty circles).

Since C(�r , �r) is weighed by |�β(r)|2 as shown in
equation (3.2), equations (3.6a)–(3.6d) suggest, for the
backscattering C(�rH, �rH) with �rH ∈ H region, that H states
are dominant while L states make hardly any contribution. The
degree of dominance increases with increasing α/γ , β and χ .
One can go through the same argument and show that, for the
backscattering C(�rL, �rL) with �rL ∈ L region, L states make a
dominant contribution.

It is possible to evaluate C(�r , �r) in equation (3.2) with
λn,μs and ψn,μs obtained by directly solving equations (3.5a)
and (3.5b). However, we employ an approximation method as
follows. In summary, we solve λn,μs and ψn,μs numerically
from equations (3.5a) and (3.5b) at Kμ = 0 only. For
Kμ = 0, D(x)K 2

μ appears in equation (3.4) as a ‘potential
barrier’ and is treated perturbatively. It leads to approximate
expressions for λn,μ and pn,μ|H which facilitate the evaluation
of C(�r , �r). Because of the presence of a potential barrier, two
distinct cases, namely, above-barrier and below-barrier states,
are separately considered below.

In the above-barrier case, where

λn,μ > DH K 2
μ,

6
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equation (3.4) gives a sinusoidal wave solution in the H region.
We take approximately

pn,μ|H/L ≈ pn,Kμ=0|H/L (above barrier) (3.7a)

λn,μ ≈ λn,Kμ=0 + Deff(n)K
2
μ (above barrier). (3.7b)

Equation (3.7b) has the interpretation of separating entangled
degrees of freedom into independent ones and approximating
the total ‘energy’ as a sum of the individual ones (e.g. λn,Kμ=0

for the x motion and Deff(n)K 2
μ for the yz motion). The

effective diffusivity for the yz motion is

Deff(n) ≡ pn,Kμ=0|L DL + pn,Kμ=0|H DH (3.7c)

which is an average of diffusivities weighted by the
corresponding probabilities. Note that, with equation (3.7b),
the above-barrier condition, λn,μ > DH K 2

μ, can be re-
expressed as

λn,Kμ=0 > [DH − Deff(n)]K 2
μ.

On the other hand, in the below-barrier case, we have

DL K 2
μ < λn,μ < DH K 2

μ,

and the wavefunction decays exponentially in the H region.
pn,μ|H � 1 for the below-barrier states, and thus they are all L
states. We take approximately

λn,μ ≈ λn,Kμ=0 + Deff(n)K
2
μ (below barrier L-states)

(3.7d)
pn,μ|H ≈ pn,Kμ=0|H fn,μ

pn,μ|L = 1 − pn,μ|H (below barrier L-states)

(3.7e)
where

fn,μ ≡ sinh(γ (H)n,μ H )/(γ (H)n,μ H )± 1

cosh(γ (H)n,μ H )± 1
� 1

appears as an extra factor in comparison with equation (3.7a),
with ‘+’ used for even-parity and ‘−’ for odd-parity states, and
γ (H)n,μ is determined by the equation λn,μ = DH[−(γ (H)n,μ )

2+K 2
μ].

With (3.7d), the below-barrier condition is re-expressed as

λn,Kμ=0 < (DH − Deff(n))K
2
μ.

4. Qualitative picture and formulae for the
calculation of δG and MC

Section 4 consists of two sections. We firstly give a qualitative
picture of δG and MC in section 4.1 and show how saturation
of δG/MC may arise for a sandwich structure. The picture
presented can be verified with the analytical result derived in
section 5. We then present quantitative expressions within
perturbation theory in section 4.2 for the calculation of
δG/MC. Numerical results presented in section 6 are obtained
with the formulae in section 4.2.

4.1. Qualitative picture of δG/MC and condition for
saturation

We first discuss the classical conductance of the structure.
Given the strong contrast GL/GH � 1, the current is mainly
confined in the H layer, with a small amount of leakage current
in the L region. The ratio of the currents in H and L regions is
estimated to be IL/IH ∼ O(GL/GH), previously noted in the
discussion of figure 2. Equivalently, the total conductance is
G ≈ GH + O(GL). Following it, the conductance correction
is thus

δG ≈ δGH + O(δGL) ≈ H 〈δσ (�rH)〉 + O
[
L〈δσ (�rL)〉

]

where 〈δσ (�rH)〉 means the average of δσ (�rH) over the H
layer, for example. Similarly, the MC, defined as �G(B) ≡
δG|B =0 − δG|B=0, is approximately

�G(B) ≈ �GH(B)+ O(�GL(B))

where �GH(B) ≡ δGH|B =0 − δGH|B=0 and �GL(B) ≡
δGL|B =0 − δGL|B=0.

To simplify the analysis of δG and MC as functions of
temperature, we divide the temperature into three regimes
with the characteristic temperatures, TH and TL, which are
determined as follows:

1/τ (H)ϕ (T ) ∼ DH/H 2 at T = TH,

1/τ (L)ϕ (T ) ∼ 1/τL at T = TL,

where τL ≡ lL/vL is the elastic mean free time of electrons
in the L region. As shall become obvious below, a sufficient
condition for the occurrence of saturation is

TL < TH. (SAT)

In the case where 1/τ (H)ϕ (T ) ∝ 1/τ (L)ϕ (T ) ∝ T p(p >

0), the condition (SAT) can easily be shown to translate into
(1/τL)

(DH/H 2)
<

τ(H)ϕ

τ
(L)
ϕ

, or

γ 2/βχ2 <
τ(H)ϕ

τ
(L)
ϕ

. (SAT′)

In the following discussion, we assume (SAT) is met and
proceed to discuss δG and MC in the three regimes, namely
TH < T , TL < T � TH and T � TL

We first consider δG for the first two regimes where TL <

T , or 1/τL < 1/τ (L)ϕ in terms of 1/τ (L)ϕ (T ). At such 1/τ (L)ϕ ,
there is not enough time for (elastic) backscattering in the L
region to occur yet, and hence δGL ∼ 0. So we have

δG ≈ H 〈δσ (�rH)〉 ∝
∑
β

〈|�β(�rH)|2v(xH)/τ (xH)
〉

λβ + 1/τ (β)ϕ

= 〈C(�rH, �rH)〉.
Now, we analyze C(�rH, �rH). It contains contributions from
all eigenstates and we pay attention firstly to that of the
zero mode λβ = 0. One can easily verify the existence of

7
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zero mode by substituting the expressions λn=0,Kμ=0 = 0
and ψn=0,Kμ=0(x) ∝ 1/ν(x) into equation (3.4). Generally
speaking, the zero mode always exists for a diffusion-type
equation and it results in the function C(�r , �r), which has been
called the diffusion pole in the literature. In the case of a
homogeneous system, the solution causes C(�r , �r) to diverge
at zero temperature (where 1/τϕ = 0). However, in our case
of a sandwich structure, the zero mode with ψn=0,Kμ=0(x)[∝
1/ν(x)] has the probability distribution primarily located in the
L region, and one can easily derive that

pn=0,Kμ=0|L = 1/(1 + γ /2αβχ2)

pn=0,Kμ=0|H = (γ /2αβχ2)/(1 + γ /2αβχ2).

Given the parameters either β 	 1, α, γ > 1, α/γ > 1,
χ � O(1) or β � O(1), α, γ > 1, α/γ > 1, χ 	 1 as
specified earlier, the above expressions show pn=0,Kμ=0|L ≈ 1
and pn=0,Kμ=0|H � 1, which implies that the zero mode is
an L state. As noted earlier, such a state hardly contributes
to C(�rH, �rH) and, consequently, the associated divergence is
suppressed for the sandwich structure in the regime TL < T .

With the pole (and all other L-state) contribution thus
being negligible, C(�rH, �rH) is primarily determined by the
spectrum of H states, which starts at the finite value λ(H)min =
O(DH/H 2) corresponding to the lowest standing wave in the
H layer. Therefore, for TL < T , we write approximately

δG ∝ 〈C(�rH, �rH)〉 ∝
∑

λβ�λ(H)min
β=H-states

〈|�β(�rH)|2v(xH)/τ (xH)
〉

λβ + 1/τ (H)ϕ

.

We further rewrite it as

δG ∝
∑
λ′
β�0

β=H-states

〈|�β(�rH)|2v(xH)/τ (xH)
〉

λ′′
β + 1/τ (eff)

ϕ + 1/τ (H)ϕ

(TL < T )

(4.1.1)
where λ′′

β = λβ − 1/τ (eff)
ϕ and

1/τ (eff)
ϕ ≡ λ

(H)
min ∼ DH/H 2. (4.1.2)

The regime of TH < T . We now apply equation (4.1.1) firstly
to the regime TH < T , or DH/H 2(∼1/τ (eff)

ϕ ) < 1/τ (H)ϕ in terms
of 1/τ (H)ϕ (T ). With 1/τ (H)ϕ > 1/τ (eff)

ϕ , one can drop 1/τ (eff)
ϕ in

the rhs of equation (4.1.1) without qualitatively modifying the
physics it represents, and so

δG ∝
∑
λ′′
β�0

β=H-states

〈|�β(�rH)|2v(xH)/τ (xH)
〉

λ′′
β + 1/τ (H)ϕ

(TH < T ).

(4.1.3)
Now, it is important to note that the above sum in (4.1.3)
simulates basically the Cooperon of an isolated H film
(with thickness = H ) at high temperatures. This can
be understood as follows. For the film, the corresponding
eigenvalues are exactly DHn2π2/H 2, n = 0, 1, 2, . . ., which
are approximately λ′′

βs of H states in (4.1.3). Similarly, the
eigenfunctions of the film are exactly standing waves (plus the

zero mode whose wavefunction is �(�r) = constant), which
may, too, be approximated by �βs in (4.1.3). Therefore, the
sum in (4.1.3) represents nearly the Cooperon of the film. With
this result, one can apply the film theory of weak localization
(e.g. [2]) to the sandwich structure. For TH < T , we
thus conclude that δG is moderately and MC is strongly T -
dependent.

The regime of TL < T � TH . Next, we apply
equation (4.1.1) to the regime TL < T � TH, or 1/τL <

1/τ (L)ϕ together with 1/τ (H)ϕ � DH/H 2(∼1/τ (eff)
ϕ ), in terms

of 1/τ (L)ϕ (T ) and 1/τ (H)ϕ (T ). Since 1/τ (H)ϕ � 1/τ (eff)
ϕ , one can

drop 1/τ (H)ϕ in the rhs of equation (4.1.1) without modifying
the physics, which gives

δG ∝
∑
λ′′
β

�0

β=H-states

〈|�β(�rH)|2v(xH)/τ (xH)
〉

λ′′
β + 1/τ (eff)

ϕ

(TL < T � TH). (4.1.4)

Now, the rhs of the last expression simulates the Cooperon
of an isolated H film with a constant phase breaking rate
1/τ (eff)

ϕ ∼ DH/H 2. It implies that both δG and MC show weak
T dependence (i.e. saturation).

The foregoing discussion for the two regimes, TH < T
and TL < T � TH, also implies that TH at which 1/τ (H)ϕ ∼
O(DH/H 2) is a characteristic temperature for the onset of MC
saturation when the temperature gradually decreases.

The regime of T � TL. Now we discuss what happens
when we enter the regime of extremely low temperatures where
T � TL or 1/τ (L)ϕ � 1/τL. In this case, backscattering in the L
region generally begins to occur and increases with decreasing
temperature. δGL is not negligible, and thus δG ≈ δGH +
O(δGL) and�G ≈ �GH + O(�GL), with both contributions
necessarily included. Since T � TH, equation (4.1.4) still
applies for δGH. Thus, one has δGH = δGH (saturated) and,
similarly, �GH = �GH (saturated), both showing weak T
dependence. On the other hand, δGL and �GL may or may
not be T -sensitive. It depends on the structure and is discussed
below. For reference, we write approximately δGL here:

δGL ∝
∑
λβ�0

β∈L−states

〈|�β(�rL)|2v(xL)/τ (xL)
〉

λβ + 1/τ (L)ϕ

(T � TL)

(4.1.5)
where only the dominant contribution (from L states) is kept.

Film-like structures. In a film-like structure, δGL in (4.1.5)
is basically the quantum correction of an isolated L film at
extremely low temperatures, which is T -sensitive, and thus
δG[≈δGH(saturated) + O(δGL)] increases sharply for T �
TL. So does �G[≈�GH(saturated)+ O(�GL)].

Bulk-like structures. On the other hand, if the structure is
bulk-like, δGL in (4.1.5) is basically the quantum correction of
a 3D L bulk at extremely low temperatures. δGL is insensitive
to T variation, and so is the total correction δG. Saturation of

8



J. Phys.: Condens. Matter 20 (2008) 425213 H-S Wei et al

δG thus persists even for T � TL down to 0 K. As for �GL, it
is generally strongly T -dependent, as is typical of a 3D system,
and thus the total�G is likely to increase sharply for T � TL.
However, in the limit of a clean L bulk where lL ∼ L ∼ L yz ,
backscattering interference in the L region hardly occurs. �GL

is nearly zero and thus the total MC saturates at �G ∼ �GH

(saturated) for T � TL down to 0 K.

4.2. Formulas for the calculation of δG and MC

We include both δGH and δGL in the analysis and derive
quantitative expressions for δG and MC within perturbation
theory. We simply take δG[≈δGH + O(δGL)] to be δGH +
δGL, within logarithmic accuracy. We have the following
conductance correction due to backscattering interference:

δGi = ti 〈δσ (�ri )〉
= −G0

Di

L2
yz

∑
n,μ

∫
dxi dy dz|�n,μ(xi , y, z)|2v(xi )

λn,μ + 1/τ (n,μ)ϕ

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−G0 Di

∑
n

∫
d2 Kμ

(2π)2
pn,Kμ

|i
λn,ky ,kz + 1/τ (n,μ)ϕ

for B = 0

−G0 Di gB

∑
n,μ

pn,μ|i
λn,μ(B)+ 1/τ (n,μ)ϕ

for B = 0

(4.2.1)

where the subscript i = L, H, ti = thickness of the i
region, gB = 2eB/hc is the degeneracy per unit area for
each Landau level, and pn,Kμ

|i and pn,μ|i are the integrated
probability

∫
dxi dy dz|�n,μ(xi , y, z)|2v(xi ) in the i region.

(The symbols μ and Kμ are used interchangeably throughout
this presentation.) The above equation shows explicitly the
dependence of δGi on pn,μ|i , thus favoring those states with
large probability in the i layer, namely the i states. We further
decompose

δGi = δG(H)
i (above barrier)+ δG(L)

i (above barrier)

+ δG(L)
i (below barrier)

where δG(H)
i (above barrier) for example, means the

contribution from above-barrier H states. Next, we treat each
part separately.

With the approximation (3.7a)–(3.7c), equation (4.2.1)
can be simplified, e.g. the integral

∫
d2Kμ in equa-

tion (4.2.1) (with B = 0) can be analytically evaluated for
δG(H/L)

i (above barrier), resulting in

δG( j)
i (above barrier) ≈ −G0 Di

×
∑

(n,μ)∈ j-states

∫
d2 Kμ

(2π)2
pn,Kμ=0|i

λn,Kμ=0 + Deff(n)K 2
μ + 1/τ ( j)

φ

= −G0

N ( j )
max∑

n∈ j-states

pn,Kμ=0|i
4π

Di

Deff(n)
ln
((

l∗ϕ(n)
)2
/l2

n + 1
)

(4.2.2)

where i = H,L, j = H,L, and (l∗ϕ(n))2 ≡ Deff(n)/(λn,Kμ=0 +
1/τ ( j)

φ ). π/ ln is the upper bound of the integral
∫

d2 Kμ to be

discussed below. For B = 0, we introduce the magnetic length
lB defined by l2

B ≡ (2πgB)
−1 = h̄c/2eB and write

δG( j)
i (above barrier)

≈ − G0 Di gB

∑
(n,μ)∈ j-states

pn,Kμ=0|i
λn,Kμ=0 + Deff(n)K 2

μ + 1/τ ( j)
φ

= −G0gB

N ( j )
max∑

n∈ j-states

pn,Kμ=0|i
2π

Di

Deff(n)

×
μ
( j )
max∑
μ

1

(2μ+ 1)+ (lB/ l∗ϕ(n))2
. (4.2.3)

The indices (n, μ) of the states to be included in δG(H/L)
i

(above barrier) are determined by the following conditions,
namely that (i) wavelength of the state > mean free path and
that (ii) the state is above the barrier. Accordingly, the upper
bound N ( j)

max for the sum
∑

n in equations (4.2.2) and (4.2.3)
satisfies

λN ( j )
max,Kμ=0 = D jπ

2/ l2
j ,

where j = H (for H states) and L (for L states). For a given
n, the integral

∫
d2 Kμ in equation (4.2.2) (or the sum

∑
μ in

equation (4.2.3)) is restricted to the interval

{
0, K

μ
( j )
max

}
.

The upper bound, K
μ
( j )
max

, is n-dependent and determined by

π/ ln ≡ K
μ
( j )
max

= min
[
π/ l j , [λn,Kμ=0/(DH − Deff(n))]1/2

]
,

where j = H (for H states) and L (for L states).
As for the below-barrier contribution, δG(L)

i (below
barrier), one resorts to equation (4.2.1), with the approximate
expressions (3.7d) and (3.7e) for λn,μ and pn,μ|i . The upper
bound N ( j)

max remains the same as that given above. However,
the integral

∫
d2Kμ (or the sum

∑
μ) is restricted to the interval

{
K
μ
( j )
max
, π/ l j

}
.

We now discuss the calculation of MC. Magnetoconductance,
defined as �G(B) ≡ δG|B =0 − δG|B=0, can be evaluated
directly with the values of δG|B =0 and δG|B=0. However,
simplification is possible in the case of weak magnetic fields,
as follows. Firstly, it is convenient to write

�G( j)
i (B) ≡ δG( j)

i |B =0 − δG( j)
i |B=0

= G0 Di

N ( j )
max∑

n∈ j-states

μ
( j )
max∑
μ

�n,μ

where

�n,μ ≡
∫ Qμ+1

Qμ

d2�k‖
(2π)2

{
pn,μ|i

λn,Kμ=0 + Deff(n)K 2
μ + 1/τ ( j)

φ

− pn,�k‖=0|i
λn,Kμ=0 + Deff(n)k2

‖ + 1/τ ( j)
ϕ

}

9
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with Q2
μ ≡ 4eBμ/h̄c and K 2

μ ≡ 4eB(μ + 1/2)/h̄c. For
the above-barrier contribution, pn,μ|i = pn,�k‖=0|i according to
equation (3.7a). The probability factor can thus be moved out
of the integral�n,μ and evaluation of the integral gives (correct
to O(B2))

μ
( j )
max∑
μ

�n,μ ≈ pn,Kμ=0|i
24πDeff(n)

((
l∗φ(n)

)2
/l2

B

)2

above the barrier.
Thus

�G( j)
i (B) ≈ G0

N ( j )
max∑

n∈ j-states

pn,Kμ=0|i
24π

Di

Deff(n)

((
l∗φ(n)

)2
/l2

B

)2

above the barrier (4.2.4)

in the case of weak magnetic fields.
In summary, we calculate δG with equations (4.2.1) (for

the below-barrier contribution) and (4.2.2) and (4.2.3) (for
the above-barrier contribution). On the other hand, MC
is calculated with equations (4.2.1) (for the below-barrier
contribution) and (4.2.4) (for the above-barrier contribution).
Numerical results presented in section 6 are obtained in this
way.

Since our calculation will be compared with that of
an isolated H film in section 6, we briefly remark on the
calculation of δG and MC for a film. The isolated film is
obviously a special case of a sandwich structure and, as such,
can be treated with the theory here. In the film case, the
corresponding eigenstates are H states and the zero mode,
and thus the film formulae can be obtained by setting in
equations (4.2.2), (4.2.3) and (4.2.4)

Deff(n) = DH, pn,Kμ=0|H = 1,

λn,Kμ=0 = DH(nπ/H )2, n = 0, 1, 2, . . .

and the upper bounds

λN (H)
max,Kμ=0 = DHπ

2/ l2
H

K
μ
(H)
max

= π/ lH.

5. Analytical results of δG and MC

Previously we have chosen the parameters either β 	 1,
α, γ > 1, α/γ > 1, χ � O(1) (for film-like structures),
or β � O(1), α, γ > 1, α/γ > 1, χ 	 1 (for bulk-like
structures). In this section, we shall tighten the parametric
range a little and make it either β 	 1, α, γ > 1, α/γ > 1,
χ > 1, or β > 1, α, γ > 1, α/γ > 1, χ 	 1. With this
modification, it is possible to proceed further with the formulae
presented in section 4.2 and make analytical estimates of δG
and MC within logarithmic accuracy. We focus on δG in
section 5.1 and MC in section 5.2. The result derived below
confirms the qualitative picture presented earlier in section 4.1.

5.1. Analytical estimate of δG (at B = 0)

We firstly compare the magnitude of various δG( j)
i s. We start

with the H-state contribution. According to section 4.2, we
have

δG(H)
L ≈ −G0 DL

×
∑

(n,μ)∈H-states

∫
d2 Kμ

(2π)2
pn,Kμ=0|L

λn,Kμ=0 + Deff(n)K 2
μ + τ

(H )−1
ϕ

δG(H)
H ≈ −G0 DH

×
∑

(n,μ)∈H-states

∫
d2 Kμ

(2π)2
pn,Kμ=0|H

λn,Kμ=0 + Deff(n)K 2
μ + τ

(H )−1
ϕ

.

It gives

δG(H)
L

δG(H)
H

∼ DL

DH

〈
pn,Kμ=0|L
pn,Kμ=0|H

〉

where 〈 pn,Kμ=0|L
pn,Kμ=0|H 〉 is the typical probability ratio for H states.

According to section 3, it is less than O(γ /α). Therefore

δG(H)
L

δG(H)
H

∼ DL

DH

〈
pn,Kμ=0

∣∣
L

pnKμ=0

∣∣
H

〉
� 1

β

γ

α
< 1. (5.1.1)

Similarly, for the L-state contribution, we have

δG(L)
L ≈ −G0 DL

×
∑

(n,μ)∈L-states

∫
d2 Kμ

(2π)2
pn,Kμ

|L
λn,Kμ=0 + Deff(n)K 2

μ + τ
(L)−1
ϕ

δG(L)
H ≈ −G0 DH

×
∑

(n,μ)∈L-states

∫
d2 Kμ

(2π)2
pn,Kμ

|H
λn,Kμ=0 + Deff(n)K 2

μ + τ
(L)−1
ϕ

.

It gives

δG(L)
H

δG(L)
L

∼ DH

DL

〈
pn,Kμ

|H
pn,Kμ

|L
〉

� γ

αχ2
< 1. (5.1.2)

According to equations (5.1.1) and (5.1.2), we can drop δG(L)
H

and δG(H)
L , and write δG ∼ δG(H)

H + δG(L)
L within logarithmic

accuracy. We evaluate δG(H)
H first and then δG(L)

L .

Calculation of δG(H )
H . According to section 4, H states are all

above barrier and their contribution gives

δG(H)
H (above barrier) ∼ − G0

4π

×
∑

n∈H-states

ln
λn,Kμ=0 + DH K 2

μ
(H)
max

+ τ (H )−1
ϕ

λn,Kμ=0 + τ
(H )−1
ϕ

where we have taken pn,Kμ=0|H ∼ 1 and Deff(n) ∼ DH for the

H states. Moreover, we take λn,Kμ=0 ∼ DH
n2π2

H 2 , n = 1, 2, . . .
and

K 2
μ
(H)
max

∼ min

[
α

γ

n2π2

H 2
,
π2

l2
H

]
=
{

α
γ

n2π2

H 2 (n < n1)
π2

l2
H

(n > n1),

n1 ≡ √
γα.

10
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We can thus write

δG(H)
H ∼ − G0

4π

⎧⎨
⎩

n1∑
n=1

ln
DH

n2π2

H 2

(
1 + α

γ

)

DH
n2π2

H 2 + τ
(H )−1
ϕ

+
N (H)

max∑
n=n1+1

ln
DH

π2

l2
H

DH
n2π2

H 2 + τ
(H )−1
ϕ

⎫⎬
⎭

where N (H)
max = H

lH
= α. Evaluating the last expression

approximately, we obtain, with

n(H)ϕ ≡ H/
√

DHτ
(H)
ϕ ,

δG(H)
H ∼ − G0

2π

{
α − n1 − n(H)ϕ

}
,

(5.1.3)

where the coefficient of each term is actually of O(1) and
depends on the parameters α and γ .

For the regime TL < T , where δG(L)
L ∼ 0 and δG ∼

δG(H)
H , equation (5.1.3) shows weak to moderate T dependence

for δG due to the term n(H)ϕ , in agreement with the qualitative
discussion in section 4.1. Moreover, it also gives the saturated
value, at small n(H)ϕ , with

δG(saturated) ∼ − G0

2π
{α − n1} .

Calculation of δG(L)
L . We calculate δG(L)

L in the regime
T � TL. We combine δG(L)

L (above barrier) and
δG(L)

L (below barrier) given in section 4.2 and write approxi-
mately

δG(L)
L ∼ G0

4π

N (L)
max∑

n=0

ln
DL

n2π2

L2 + DL
π2

l2
H

+ τ (L)−1
ϕ

DL
n2π2

L2 + τ
(L)−1
ϕ

where N (L)
max = L

lL
= γ and we have taken pn,Kμ=0|L ∼ 1,

Deff(n) ∼ DL and λn,Kμ=0 ∼ DL
n2π2

L2 , n = 0, 1, 2, . . . for
L states. Evaluating the expression approximately, we obtain,

with n(L)ϕ ≡ L/
√

DLτ
(L)
ϕ

δG(L)
L ∼ − G0

2π

{
γ − n(L)ϕ + 1

2
ln
τ (L)ϕ

τL

}
(5.1.4)

where the coefficient of each term is actually of O(1). The
last logarithmic term derives from the zero-mode L state and
describes the conductance correction of a 2D film, while the
first two terms describe the conductance correction of an L
bulk. The bulk terms dominate at high 1/τ (L)ϕ while the film
term does so at low 1/τ (L)ϕ . The crossover from bulk-like
to film-like behavior occurs at low 1/τ (L)ϕ (crossover) (where
n(L)ϕ ∼ 0), with

τ (L)ϕ (cross over) ∼ τL exp(2γ ) > τLγ
2 ∼ L2/DL. (5.1.5)

The last result shows that τ (L)ϕ (crossover) is longer than the
time a particle takes to diffuse across the L region (5.1.5) which
determines the crossover temperature by the equation

τ (L)ϕ (Tcrossover) ∼ τ (L)ϕ (crossover).

Total conductance correction δG. One can combine the
results (5.1.3) and (5.1.4) to obtain δG ∼ δG(H)

H + δG(L)
L and

verify the overall low-temperature behavior of δG discussed
in section 4.1. We make only two remarks. Firstly, the
additional contribution of δG(L)

L to δG for T � TL gives
an increase in δG, with the increase being described by
equation (5.1.4). Secondly, we discuss the condition for zero-
temperature saturation of δG. Apart from τ (L)ϕ (crossover)
given in equation (5.1.5), we note that another important
timescale is the cutoff value of phase breaking time for a finite-
size system, which is τ (c)yz ∼ L2

yz/DL (for diffusion from one
electrode across the structure to the other electrode). For a
bulk-like sandwich structure , L ∼ L yz and τ (c)yz ∼ L2/DL.
Thus, τ (c)yz < τ(L)ϕ (crossover) according to equation (5.1.5)
and the crossover does not happen. In other words, the
system remains bulk-like even down to 0 K with a saturated
δG ∼ − G0

2π (α + γ − n1 − n(L)ϕ ) according to equations (5.1.3)
and (5.1.4), where n(L)ϕ is evaluated at τ (c)yz . On the other hand,
for a film-like structure, L � L yz and τ (c)yz > τ(L)ϕ (crossover).
The system eventually crosses over at Tcrossover, with δG
diverging as ln(τ (L)ϕ /τL) for T < Tcrossover according to
equation (5.1.4).

5.2. Analytical estimate of MC at weak B

We calculate MC to O(B2) at weak B . We first compare the
various �G( j)

i s, with i, j = L,H. We start with the H-state
contribution. According to section 4.2, we have

�G(H)
H (B) ≈ −G0 DH

∑
n∈H-states

m(H)
max∑
m

�n,m

with

�n,m ≡
∫ Qm+1

Qm

d2�k‖
(2π)2

{
pn,m|H

λn,Km=0 + Deff(n)K 2
m + 1/τ (H)φ

− pn,�k‖=0|H
λn,Km=0 + Deff(n)k2

‖ + 1/τ (H)φ

}
.

Since pn,m|H ∼ pn,�k‖=0|H for H states, we can factor out the
probability and write

�G(H)
H (B) ≈ −G0 DH

∑
n∈H-states

pn,Km=0|H
m(H)

max∑
m

�′
n,m

where

�′
n,m ≡

∫ Qm+1

Qm

d2�k‖
(2π)2

{
1

λn,Km=0 + Deff(n)K 2
m + 1/τ (H)φ

− 1

λn,Km=0 + Deff(n)k2
‖ + 1/τ (H)φ

}

is slightly different from �n,m . Likewise, we write

�G(H)
L (B) ≈ −G0 DL

∑
n∈H−states

pn,Km=0|L
m(H)

max∑
m

�′
n,m .

Hence, we obtain the ratio

�G(H)
L

�G(H)
H

∼ DL

DH

〈
pn,Kμ=0|L
pnKμ=0|H

〉
� 1

β

γ

α
< 1 (5.2.1)

which is analogous to equation (5.1.1).

11
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On the other hand, for the L-state contribution, we have

�G(L)
L (B) ≈ −G0 DL

∑
n∈L-states

pn,Km=0|L
m(L)

max∑
m

�′
n,m . (5.2.2)

�G(L)
H (B) ≈ −G0 DH

∑
n∈L-states

pn,Km=0|H
m(L)

max∑
m

�′′
n,m (5.2.3)

where

�′′
n,m ≡

∫ Qm+1

Qm

d2�k‖
(2π)2

{
f ′′
n,Km

λn,Km=0 + Deff(n)K 2
m + 1/τ (L)φ

− f ′′
n,k‖

λn,Km=0 + Deff(n)k2
‖ + 1/τ (L)φ

}
.

Note that �G(L)
H (B) is written in terms of �′′

n,m which is
slightly different from �′

n,m , with the extra factor f ′′ being
present in �′′

n,m . f ′′ is closely related to f introduced in
equation (3.7e) for below-barrier L states. Its definition is
given below

f ′′
n,Kμ

≡
{

1, for above-barrier states

fn,μ, for below-barrier states.

The reason for the appearance of f ′′ is that�G(L)
H (B) contains

contributions from both below-barrier and above-barrier L
states. For above-barrier states, the H-region probability is
given as pn,Kμ

|H ∼ pn,Kμ=0|H, while for below-barrier L states,
it is pn,Kμ

|H ∼ pn,Kμ=0|H fn,m , as given in equation (3.7e).

With the presence of the factor f ′′ in �G(L)
H (B), it is less

trivial to calculate the ratio �G(L)
H

�G(L)
L

. It turns out that one still

obtains
�G(L)

H

�G(L)
L

� γ

αχ2
< 1, (5.2.4)

which is analogous to equation (5.1.2). The proof is a little
lengthy and thus is omitted here.

According to equations (5.2.1) and (5.2.4), we can drop
�G(L)

H and �G(H)
L and write �G ∼ �G(H)

H + �G(L)
L within

logarithmic accuracy. We evaluate�G(H)
H first and then�G(L)

L .

Calculation of �G(H )
H . According to section 4.2

�G(H)
H (B) ≈ G0

24πl4
B

N (H)
max∑

n=1

D2
H(

DH
n2π2

H 2 + τ
(H )−1
ϕ

)2

= G0 H 4

24π5l4
B

F

(
l(H)ϕ

H
; N (H)

max

)
(5.2.5)

where l(H)ϕ ≡
√

DHτ
(H)
ϕ and we have taken pn,Kμ=0|H ∼ 1,

Deff(n) ∼ DH and λn,Kμ=0 ∼ DH
n2π2

H 2 , n = 1, 2, . . . for H
states. The function F(x; N) in equation (5.2.5) is defined as

F(x; N) ≡
N∑

n=1

1(
n2 + 1/(πx)2

)2 ,

with the property

F(x; N) ∼ O(1)(πx)3 for πx < O(1)

(i.e., 1/τ (H)ϕ > O(DH/H 2)) (5.2.6a)

F(x; N) ∼ O(1) for πx > O(1)

(i.e. 1/τ (H)ϕ < O(DH/H 2)). (5.2.6b)

For the regime TL < T , �G(L)
L ∼ 0 and �G ∼ �G(H)

H .
Equations (5.2.5) and (5.2.6a) show strong 1/τ (H)ϕ dependence
for �G at high 1/τ (H)ϕ > DH/H 2 (or TH < T ), with

�G ∝ τ
(H )3/2
ϕ , in agreement with the qualitative discussion

in section 4.1. Moreover, equations (5.2.5) and (5.2.6b) give
the saturated value

�G(saturated) ∼ �G(H)
H (saturated) ∼ O(1)

G0 H 4

24π5l4
B

for TL < T � TH.

Calculation of �G(L)
L . We calculate �G(L)

L in the regime
T � TL. According to section 4.2

�G(L)
L (B) ≈ G0

24πl4
B

N (L)
max∑

n=0

D2
L(

DL
n2π2

L2 + τ
(L)−1
ϕ

)2

= G0l(L)
4

ϕ

24π5l4
B

+ G0 L4

24π5l4
B

F

(
l(L)ϕ
L

; N (L)
max

)
(5.2.7)

where l(L)ϕ ≡
√

DLτ
(L)
ϕ and we have taken pn,Kμ=0|L ∼ 1,

Deff(n) ∼ DL and λn,Kμ=0 ∼ DL
n2π2

L2 , n = 0, 1, 2, . . . for L
states. The function F(x; N) is as defined previously.

The first term in equation (5.2.7) derives from the zero
mode (i.e. n = 0 L state) in the sum. It varies like τ (L)

2

ϕ

and describes the MC of a 2D film. The second term derives
from the remaining n = 0 states. According to the property
of F(x; N) listed in (5.2.6a) and (5.2.6b), it varies like τ (L)3/2ϕ

for l(L)ϕ /L < O(1) (or 1
τ
(L)
ϕ

> O( DL
L2 )) and becomes saturated

for l(L)ϕ /L > O(1) (or 1
τ
(L)
ϕ

< O( DL
L2 )). Thus, the second term

describes the MC of an L bulk with a saturated dephasing time
τ (L)(eff)
ϕ ∼ 1/λn=1,Kμ=0 ∼ L2

DL
. The bulk term dominates at high

1/τ (L)ϕ while the film term does so at low 1/τ (L)ϕ . The crossover
from bulk-like to film-like behavior occurs at T ′

crossover, which
is determined by

τ (L)ϕ (T ′
crossover) ∼ τ (L)(eff)

ϕ , (5.2.8)

where the bulk and film terms are comparable.

Total magnetoconductance �G. One can combine the
results (5.2.5) and (5.2.7) to obtain�G ∼ �G(H)

H +�G(L)
L and

verify the overall low-temperature behavior of �G discussed
in section 4.1. Analogous to the case of δG, the additional
contribution of �G(L)

L to �G for T � TL generally gives a
sharp rise in �G. The rise is described by equation (5.2.7),
firstly being bulk-like and varying as τ (L)3/2ϕ , and then crossing
over to being film-like at T ′

crossover. Beyond the crossover, �G
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Figure 4. |δG| (in units of 2e2/π h̄) versus 1/τφ (in units of
εH ≡ DH(π/H)2) for the sandwich structure and the isolated film.
We take L = H/2, α = 10, β = 4000, γ = 2. Dashed
curve—isolated film; solid curve—sandwich structure.

diverges as τ (L)2ϕ until the size effect sets in at the temperature
where τ (L)ϕ ∼ τ (c)yz . However, things are different in the limit
of a clean L bulk where lL ∼ L ∼ L yz . In this case, we have
τL ∼ τ (c)yz . This shuts off the window τL < τ(L)ϕ < τ (c)yz in
which backscattering interference in the L region is allowed to
happen. Therefore, backscattering hardly occurs and �G(L)

L is
nearly zero (equation (5.2.7) for �G(L)

L does not apply here).
Thus, the total MC saturates at �G ∼ �G(H)

H (saturated) for
T � TL down to 0 K.

6. Film-like sandwich structure versus isolated H
film (numerical results)

In this section, we calculate numerically all δG( j)
i s and�G( j)

i s,
with the formulae presented in section 4.2, and combine them
to obtain the total δG and MC. Parameters of the structure in
the calculation are specified as follows. In general, 1/τ (H)ϕ (T )
and 1/τ (L)ϕ (T ) are material- and structure-dependent. For
clarity of presentation, we shall take 1/τ (H)ϕ = 1/τ (L)ϕ

and denote both as 1/τϕ . With this assumption, (SAT′) in
section 4.1 reduces to

γ 2/βχ2 < 1.

It shows that saturation may occur with either film-like
structures (with β 	 1) or bulk-like structures (with χ 	 1).
For a demonstration, we focus on a film-like structure. A
brief discussion about bulk-like structures is given at the end
of this section. The film-like sandwich structure considered
has parameters L = H/2, α = 10, γ = 2 and its behavior
is compared to that of an isolated H film with thickness =
H, α = 10. The parameter β is varied and specified in each
case.

The conductance correction is shown in figure 4 and MC
is shown in figure 5. β = 4000 is used in both cases. In the
figures, the characteristic inverse times are εH ≡ DH(π/H )2

and 1/τL[∼ γ 2

βχ2 εH]. Firstly, the result of a sandwich structure

Figure 5. MC (in units of 2e2/π h̄) versus 1/τφ (in units of
εH ≡ DH(π/H)2) for the sandwich structure and the isolated film.
The parameters used are the same as those in figure 4. The applied
magnetic field is specified by the value H 2/l2

B = 0.0001.

Figure 6. MC (in units of 2e2/π h̄) versus 1/τφ (in units of
εH ≡ DH(π/H)2) for the sandwich structure. Parameters, except for
β, are the same as those taken in figure 4. Three values of β are
used—β = 40 (dashed curve), β = 400 (dashed–dotted curve) and
β = 4000 (solid curve). The applied magnetic field is specified by
the value H 2/l2

B = 0.0001.

is reduced relative to that of the film over the whole range
of 1/τϕ shown in the graph, in both figures. In fact, this
relative reduction constantly shows up also with other values
of β (see figure 6 for data with β = 40 and 400), and may be
regarded as the precursor of saturation regardless of whether
a good look of saturation actually appears. Secondly, at the
low-temperature side (i.e. 1/τϕ < εH), both δG and MC for
the isolated film increase with decreasing 1/τϕ , as is typical
with an ideal Q2D system. But for the sandwich structure, they
remain nearly constant for 1/τL < 1/τϕ � εH. It shows that
the sandwich structure behaves like the film with effectively
a finite phase breaking time τ (eff)

ϕ ∼ O(1/εH), even when
the true rate is reduced to low 1/τϕ < O(εH). However,
both δG and MC eventually increase sharply at extremely low
1/τϕ � 1/τL. Last, perhaps not surprisingly, results for the two
structures (i.e. sandwich and film) appear to converge at high
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Figure 7. τ (eff)
ϕ (in units of 1/εH ≡ (H/π)2/DH) versus 1/τϕ (in

units of εH ≡ DH(π/H)2). Parameters, except for β, are the same as
those taken in figure 4. Three values of β are used—β = 40 (dashed
curve), β = 400 (dashed–dotted curve) and β = 4000 (solid curve).

temperatures (i.e. 1/τϕ > εH), for the following simple reason.
With short τϕ , the phase coherence length l(H)ϕ is smaller than
H . It means that, for the sandwich structure, electrons of the
conducting channel stay largely in the H region during the
backscattering period τϕ . Such a situation is not much different
from that of the isolated film. It thus explains the convergence.

In figure 6, we plot the MC of the sandwich structure for
β = 40, 400 and 4000. It shows the interesting trend that
the saturation of MC becomes prominent with increasing β .
Because β is the parameter controlling the ratios of transport
properties of the H and L regions, it means that the more
contrast between the regions, the better the saturation appears.

Comparison of the sandwich structure with an isolated
film can also be approached from the following viewpoint. We
define the effective dephasing time τ (eff)

ϕ by requiring

�G(sandwich)(τϕ) = �G(film)(τ (eff)
ϕ ),

which means that the orthodox theory of an isolated film is
imposed on the MC of a sandwich structure. This determines
the function τ (eff)

ϕ (1/τϕ) plotted in figure 7 for β = 40, 400 and
4000. Firstly, it shows that the nominal dephasing time (τ (eff)

ϕ )
is suppressed relative to the true one (τϕ). Secondly, it shows
that, with increasing β , τ (eff)

ϕ begins to show saturation and the
look of saturation improves with increasing β . Specifically, the
phenomenon of saturation shows clearly for β = 4000, while
for β = 40, it can hardly be discerned. Last, at extremely low
1/τϕ � 1/τL, τ (eff)

ϕ increases sharply in all cases.

Saturation and parameters/structures

In summary, the numerical result has demonstrated clearly that,
for film-like structures, the look of saturation improves with
increasing β . The trend can also be understood in terms of
the condition (SAT′), which shows that (SAT′) is likely to be
satisfied with large β in the case of film-like structures. In
the following, we briefly discuss the parametric condition for
the occurrence of saturation in the case of bulk-like structures.

Based on (SAT′), saturation may also occur with β 	 1 or,
alternatively, with χ/γ 	 1. We make two notes below on the
second condition. Firstly, since χ/γ = lL/H , the condition
χ/γ 	 1 leads to lL 	 lH. It means that a relatively clean
L region in the structure aids the occurrence of saturation.
Secondly, since L > lL is required in our work, we further
have the condition L(> lL) 	 lH. This puts a constraint on the
minimum thickness of the L region and, as such, the condition
χ/γ 	 1 is less likely to hold for film-like structures.

7. Remark, summary and conclusion

In this section, we shall summarize the present work. A
simple physical picture for dephasing is also offered in terms of
electron lifetime in the H layer. A brief discussion guided by
the present theory is given for dephasing experiments, where
a theoretical estimate of dephasing time is compared with the
experimental value. Limitations and future extension of the
present theory are discussed.

We have presented a theoretical study of transport
properties for a sandwich structure in the weak localization
regime. We have considered two classes of structures, namely
film-like and bulk-like ones, and have derived analytical
estimates of δG and MC applicable to both cases. In general,
it shows that, for a certain range of parameters where the
condition (SAT) is satisfied, δG and MC may stay nearly
constant over a range of temperatures, as if the phase breaking
time were saturated.

We have specifically carried out numerical calculations
for a film-like structure and compared them with those of a
freestanding film. The result confirms the discussion based on
analytical estimations. Moreover, it is found that both δG and
MC are suppressed with respect to those of the film. It also
shows that the better the current is confined (to the H layer
by increasing β), the more discernible the saturation becomes.
We have also examined the saturation from an alternative
viewpoint, with a nominal phase breaking rate defined for a
sandwich structure in terms of film theory. We have shown that,
while the true phase breaking rate varies, the nominal rate (i.e.
1/τ (eff)

ϕ ) may stay nearly constant over a range of temperatures.
The saturation demonstrated can intuitively be explained

in terms of the characteristics of a sandwich structure. It has the
feature that the frequency of backscattering varies dramatically
over regions. When the H layer and L regions are in strong
contrast, backscattering occurs primarily in the H layer for
TL < T . Once an electron enters the L region, it makes hardly
any backscattering, and from that viewpoint it looks as if the
electron had decayed, with a lifetime given by O(H 2/DH), i.e.
the time it takes to diffuse out of the H layer. This determines
the saturation value of the nominal phase breaking time, with
τ (eff)
ϕ (saturated) ∼ O(H 2/DH), while the true one varies with

T .
As the work shows, at extremely low temperatures where

T � TL, δG MC, and τ (eff)
ϕ all diverge for a film-like structure.

This is consistent with the experimental observation with
Cu93Ge4Au3 films, reported in [8], of a sharp upturn in MC
at the end of saturation. Hopefully, the calculation presented
here is relevant to the understanding of such experiments. For
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bulk-like structures in the regime T � TL, δG saturates but
MC diverges except in the limit of the clean L bulk.

We also remark on the limitation/future extension of the
present theory. Firstly, it is worthwhile to refine the theory.
In a moment, we shall compare the present theory with
experiments and suggest the direction of improvement for a
better agreement with experiments. Secondly, it would be
interesting to extend the present theory to different dimensions,
e.g. the case of Q1D systems. Thirdly, it would be useful
to develop an analogous theory for quantum-confined Q2D
systems. Derivation of the present theory is based on the
condition that H > lH > λH and L > lL > λL, which
is true only in diffusion-confined structures. In the case of
quantum-confined Q2D systems, such a condition does not
hold and thus the present derivation does not apply. A rigorous
derivation of the theory for such systems shall be useful for
the experiments with these systems. In the absence of such
a derivation, however, in the following we shall rely on the
present theory as a guide to discuss dephasing experiments,
where quantum-confined systems are as likely to be involved
as diffusion-confined ones.

With the above limitation of our theory in mind, we now
analyze the experiments of Lin and Giordano with Au–Pd
films [6] from the viewpoint of our theory. Two samples are
considered. The first sample is characterized by the parameters
DH = 2.3 × 10−3 m2 s−1 and H = 120 A. We estimate the
saturated value with the formula τ (eff)

ϕ (theo.) ∼ H 2/DH which
appeared earlier in the qualitative analysis of section 4.1 for
diffusion-confined systems, and obtain τ (eff)

ϕ (theo.) ∼ 0.63 ×
10−13 s. In contrast, the experimental value is τ (eff)

ϕ (exp t .) =
6.55 × 10−13 s, which is about ten times as large. The
second sample is characterized by the parameters DH = 0.4 ×
10−3 m2 s−1 and H = 160 A. We estimate the saturated
value again with the formula suitable for diffusion-confined
structures, and obtain τ (eff)

ϕ (theo.) ∼ 6.4 × 10−13 s. The
experimental value is τ (eff)

ϕ (exp t .) = 1.2 × 10−11 s, which is
about twenty times as large. Thus, in both cases, τ (eff)

ϕ (exp t .)
is larger than τ (eff)

ϕ (theo.) by an order of magnitude.
We propose two different scenarios for the source of the

numerical difference between τ (eff)
ϕ (exp t .) and τ (eff)

ϕ (theo.).
(A) The samples may be quantum-confined systems, which
should, rigorously speaking, be treated with some extended
form of the present theory to account for the quantum-
mechanical nature of electron movement. (B) Alternatively, the
samples may be diffusion-confined, but our estimation within
the present (diffusion-confined) model may be oversimplified.
For example, it uses the formula suitable for a symmetric
I–L–H–L–I sandwich structure while the samples, as non-
freestanding films, may be close to asymmetric I–L–H
structures (as discussed in section 2). Although the formula
should be qualitatively correct also for asymmetric structures,
it may result in some numerical difference. Moreover, various
parameters, such as L, β , etc, are unknown. Thus, the
estimation can only be based on the rough formula given in
the qualitative discussion of section 4.1. This may further
bring in some differences. Finally, it is important to note
that our present classical diffusive theory does not account for
the effect of quantum mechanics on the diffusive movement

of electrons across the L/H interface. As explained in the
following, this quantum effect in fact enhances the dephasing
time. According to quantum mechanics, there is a strong
reflection of electrons at the L/H interface, with the reflection
coefficient estimated by Refl. = [(λH/λL − 1)/(λH/λL +
1)]2 ∼ 1 − 2λH/λL in the limit λL 	 λH. In a classical
theory such as the present one, the interface reflection is
completely neglected, and hence the electron lifetime for
dwelling in the H layer is the same as the diffusion time
O(H 2/DH) (within which an H-layer electron diffuses out of
the layer). However, with the reflection taken into account,
the H-layer electron undergoes the process of diffusing in
the layer and then bouncing back at the L/H interface, for
several times, before eventually getting out. Thus, the H-layer
dwelling time (which is also the saturated dephasing time, as
discussed earlier in this section) is enhanced by the quantum
effect. According to the above simple-minded picture, it
gives O(λL/λH)(H 2/DH) as the enhanced dephasing time. In
order to match the theoretical values with experimental ones,
the foregoing expression of enhanced dephasing would place
the enhancement factor λL/λH at approximately 10 and 20,
respectively, for the two samples. Now, if we take these
values and stretch this line of discussion further, an interesting
inference may be made, as follows. We begin by noting
that, although the two samples differ much in the dephasing
time (which can be either theoretical or experimental), the
enhancement factor λL/λH for the time varies only by a factor
of two according to the above estimation. With λH being
already fixed at the typical Fermi wavelength of Au–Pd, it
follows that the variation of λL must be rather insignificant
for the samples. Since the value of λL is determined by the
composition and structure of the L layer, one would further
infer that, with respect to the samples, the properties of the
L layer (or, equivalently, the I/H interface as discussed in
section 2) must remain fairly constant. Interestingly, such
an inference is actually consistent with the empirical fact
that samples grown in the same experimental group tend to
have similar interfaces. Thereby, the above discussion of
quantum effect shows some physical sense, and it points to
the possibility of improving the numerical difference with the
inclusion of the quantum effect in the model. However, we note
that, although the discussion is made within scenario B and
thus lends support to the scenario, it is not conclusive enough
to rule out scenario A.

Last, the above numerical comparison shows that, in
order to analyze the current dephasing experiments more
accurately, it is imperative to extend the theory and incorporate
the quantum-mechanical nature of electron motion, regardless
of the type of systems involved. We hope to see such a
development in the future.
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